Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Human Health
        • Integrative Omics
        • Microbiome Science
      • Chemistry
        • Catalysis
        • Chemical Physics
      • Computational Research
        • Artificial Intelligence
        • Computational Mathematics & Statistics
        • Graph and Data Analytics
        • High-Performance Computing
        • Software Engineering
        • Visual Analytics
      • Earth System Science
        • Plant Science
        • Atmospheric Science
        • Terrestrial Aquatics
        • Subsurface Science
        • Ecosystem Science
        • Coastal Science
      • Materials Science
        • Solid Phase Processing
        • Science of Interfaces
        • Precision Materials by Design
        • Materials in Extreme Environments
      • Nuclear & Particle Physics
        • Dark Matter
        • Neutrino Physics
        • Flavor Physics
        • Fusion Energy Science
      • Quantum Information Science
    • Energy Resiliency
      • Electric Grid Modernization
        • Distribution
        • Transmission
        • Grid Architecture
        • Grid Analytics
          • AGM Program
        • Grid Cybersecurity
        • Emergency Response
      • Energy Efficiency
        • Building Technologies
          • Building-Grid Integration
          • Advanced Lighting
        • Residential Buildings
          • Energy Efficient Technology Integration
          • Home Energy Score
          • Building America Solution Center
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Building Energy Codes
        • Appliance and Equipment Standards
      • Energy Storage
        • Grid Energy Storage
        • Vehicle Energy Storage
      • Environmental Management
        • Environmental Remediation
        • Waste Processing
        • Radiation Measurement
      • Fossil Energy
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Reactor Licensing
        • Reactor Operations
        • Fuel Cycle Research
        • Advanced Reactors
      • Renewable Energy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower and the Electric Grid
          • Hydropower Cybersecurity and Digitalization
          • Materials Science for Hydropower
          • Water + Hydropower Planning
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Wind Energy
          • Distributed Wind
          • Offshore Wind
          • Uncertainty Quantification
          • Wildlife and Wind
          • Wind Data Archive and Portal
          • Wind Resource Characterization
        • Geothermal Energy
        • Solar Energy
      • Transportation
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
    • National Security
      • Computing & Analytics
        • Artificial Intelligence
        • Computational Mathematics & Statistics
        • Graph and Data Analytics
        • High-Performance Computing
        • Software Engineering
        • Visual Analytics
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Nonproliferation
        • Stakeholder Engagement
        • Technical Training
      • Weapons of Mass Effect
        • Explosives Detection
        • Chemical & Biological Signatures Science
        • Radiological & Nuclear Detection
    • Lab Objectives
    • Publications & Reports
    • S&T Capabilities
  • People
    • Inventors
    • Diversity
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
    • Community
      • STEM Education
      • Philanthropy
      • Volunteering
      • Economic Impact
    • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Bioproducts, Sciences, and Engineering Lab
      • Environmental Molecular Sciences Laboratory
      • Institute for Integrated Catalysis
      • Marine and Coastal Research Laboratory
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory
      • Systems Engineering Building
      • Wasteform Development Laboratory
      • PNNL Seattle Research Center
      • PNNL 5G Innovation Studio

Breadcrumb

  1. Research
  2. Scientific Discovery
  3. Quantum Information Science

Quantum
Information
Science

Setting the stage for a quantum
computing revolution

  • Scientific Discovery
    • Biology
    • Chemistry
    • Computational Research
    • Earth System Science
    • Materials Science
    • Nuclear & Particle Physics
    • Quantum Information Science
  • Energy Resiliency
  • National Security
  • Lab Objectives
  • Publications & Reports
  • S&T Capabilities
  • News & Updates
  • Attend a Quantum Information Science Event
  • Projects

Quantum computing is expected to revolutionize our ability to solve difficult problems that are beyond the scope of today’s computers. Many of these problems are central to PNNL core mission areas in chemistry, materials science, and energy resiliency.

Research that supports quantum computing, simulation, communication, and sensing is at the core of PNNL’s quantum information science (QIS) strategy. Our approach is one of co-design, where advances in the fundamental understanding of quantum phenomena lead to more robust quantum computing infrastructure, which leads to better problem solving in a cycle of continuous improvement. This expertise has been harnessed by three DOE-sponsored QIS Research Centers. Broadly, our efforts are focused on complementary and interdependent activities.

Quantum algorithms and software implementations

Existing classical computing approaches are limited in accuracy and efficiency when simulating quantum systems. Quantum chemistry has been identified as a leading application for quantum computing. PNNL is developing quantum computing algorithms and programming models that demonstrate the power of quantum computing with quantum-accelerated applications in advanced materials and catalysts, our traditional areas of strength in energy sciences. Much of this work is built from the backbone of NWChem computational chemistry code.

Materials synthesis and characterization

Quantum computing requires highly tailored, atomically precise materials. We are studying the role of chemical and isotopic purity through synthesis, fabrication, and device application. Using PNNL’s strengths in microscopy and trace analysis, we are conducting material characterization to relate structure and purity to device performance.

Low temperature physics

Cooling of materials to less than one-tenth of a degree above absolute zero is essential for many of the proposed quantum computing architectures. In most cases, devices are operated using adiabatic demagnetization refrigeration (ADR) and 3He/4He dilution refrigeration. At these low temperatures, atoms behave differently. We are studying the behavior of materials of interest to superconducting quantum devices using a suite of advanced analytical instrumentation.

Mitigation of environmental effects

This effort builds on PNNL’s expertise in developing and deploying the world’s most sensitive radiation detectors constructed from ultra-pure materials. Based on this expertise, PNNL is studying how to mitigate environmental disturbances that affect qubit performance through controlling the materials and environment surrounding qubit devices. We teamed with scientists at MIT, together showing that superconducting quantum bits are sensitive to cosmic radiation. That research has led to exploration of the Shallow Underground Laboratory as a potential location for an environmentally shielded quantum computing test bed.

Applying physics to improve QIS devices and sensors

Advancing the development of superconducting quantum computing devices fabricated from well characterized, ultra-precise materials will entail closing the R&D loop with device performance evaluation. PNNL researchers in nuclear and particle physics will draw upon their expertise in sensor performance and operation to assess QIS-oriented superconducting devices to understand and overcome environmental and materials fabrication limitations to operation.

Quantum workforce preparedness

Our commitment to developing a quantum computing infrastructure and workforce is reflected in our robust partnerships with academic and industry leaders in quantum computing. We co-founded the Northwest Quantum Nexus (NQN), a coalition of research and industrial organizations in the Pacific Northwest and neighboring regions. Through the NQN, we offer training and internship opportunities in quantum algorithm and software development.

Related content

SciVIBE Podcast

Recent News

JANUARY 12, 2021
Web Feature

Connected Moments for Quantum Computing

Read
Connected moments
NOVEMBER 16, 2020
Web Feature

A Bridge to the Quantum Revolution

Read
Sriram Krishnamoorthy poses with PNNL supercomputer
NOVEMBER 13, 2020
Web Feature

GPU Clusters Accelerate Quantum Computer Simulator

Read
Artist's rendering of a quantum computer.
SEE MORE RELATED NEWS

Related Links

Northwest Quantum Nexus

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn